
May 1998 The Delphi Magazine 43

Under Construction:
Internet Database Applications
by Bob Swart

In this article we’ll create a real
database application on the

internet, using simple CGI tech-
niques, without the Delphi 3 Web
Modules. Next time, we’ll enhance
this solution even further by
upgrading the CGI application to
an ISAPI web server extension DLL.

Whilst the Delphi 3 Client/Server
Edition Web Modules offer a signifi-
cant enhancement over the ‘trad-
itional’ development of CGI and
ISAPI/NSAPI internet applications,
not everyone is able to purchase
the Delphi 3 Client/Server Suite.
Many developers are using the
Professional Edition.

So, in response to readers’
requests, this month we will
develop a database (actually, a
single table for now) and create
CGI applications to browse, edit,
insert, delete and query this data-
base, including multi-user aware-
ness. As the main example for this
month, I decided for once not to
use the BIOLIFE example table
[Hurrah! Ed], but something more
interesting, and come up with a
final application that might even be
useful for a number of people.

Long time subscribers (or
people who purchased The Delphi
Magazine Collection ‘96 CD-ROM)

may remember Issue #11, where
we created an AddIn wizard for
error reporting and error handling,
based on a single table. This
wizard, called BERT (for Bolesian
Error Report Tool), has had some
minor enhancements since then,
and is now ready to undergo a final
upgrade to become internet-
aware. Using a web browser we can
now report errors and query the
progress of error fixes too.

Database
The single REPORT.DB table to
store the reports consists of an
integer key field called Report, a
number of string fields (mainly
items picked from a list), two date
fields and two memo fields (for
detailed comments). The Object
Pascal source code to generate the
table is on the disk.

Pick-Lists
Now that we have the table in
which to store our reports, we
need to define the lists of items for
a number of the string fields. At
least for ReportStatus, ReportSys-
tem, ReportProblem, ReportPriority
and FixStatus we can specify a set
of pre-defined answers. If we have a
limited number of testers and/or
bug-fixers then the same can be
said for ReportedBy and FixedBy.

Using a REPORT.INI file I can
define the entries in the pick-lists
(Listing 1). Also, given the names
of the fields in the table, I would
also like to specify some more suit-
able display names to be shown to
the user. For each field I defined a
section in REPORT.INI, with entries
for Name and Items (if it contains a
list of pre-defined items). Given the
fact that I want to dynamically pro-
duce a set of HTML forms, it would
help if I could specify the form
action and also a title and bitmap
to place on top of each page. This
is done in the general [report.db]
section of the INI file.

Target
Ideally, the application should
look like Figure 1 when browsing
records: ready to go to the first,
previous, next or last record,
ready to insert or delete a record,
to find a record or perform some
query, refresh a record (if some-
one else has changed its value for
example) or to reset the input on
the form if we typed new data.

The first step in making this
work is to write a little program to
generate the HTML form that
makes up Figure 1. Note that, apart
from ‘action’ buttons, the only con-
trol types that I use are text (plain
editbox), drop-down comboboxes

[report.db]
Name=BERT - Bolesian Error Report Tool
Bitmap=http://www.bolesian.nl/groups/
delphi/bolesian/gif/bert-ico.gif

Action=http://www.bolesian.nl/cgi_bin/
bert.exe

[ReportDate]
Name=Report Date:
[ReportedBy]
Name=Reported by:
[ReportStatus]
Name=Status:
Items=5
Item1=Reported
Item2=Open (active)
Item3=Handled
Item4=Verified
Item5=Closed
[ReportSystem]
Name=(Sub)System:
Items=5
Item1=General
Item2=Database

Item3=Engine
Item4=User Interface
Item5=Reports
[ReportProblem]
Name=Type of Problem:
Items=5
Item1=Error (Crash)
Item2=Problem
Item3=New Wish
Item4=Remark
Item5=Question
[ReportPriority]
Name=Priority:
Items=5
Item1=Critical
Item2=High
Item3=Medium
Item4=Low
Item5=None
[ReportSummary]
Name=Report Summary:
[ReportSeeAlso]
Name=SeeAlso:

[ReportComments]
Name=Report Comments:
[FixDate]
Name=Handle Date:
[FixedBy]
Name=Handled by:
Items=2
Item1=
Item2=Bob Swart
[FixStatus]
Name=Handle Action:
Items=4
Item1=
Item2=Fixed
Item3=WAD (ignored)
Item4=New Spec.
[FixComments]
Name=Additional Comments:

➤ Listing 1

44 The Delphi Magazine Issue 33

and a text field (for a multi-line
memo).

Yet Another HTML CGI Wizard
We probably all know by now that
an HTML CGI Form is embedded
within <FORM ACTION=...
METHOD=...> and </FORM> tags. And
inside these tags, we can define the

different input fields. A single
<INPUT TYPE=text> for plain edit
boxes, a set of <TEXTAREA ROWS=...
COLS=...> and </TEXTAREA> for a
memo field, and a set of <SELECT>
and </SELECT> tags, with <OPTION>
tags inside, for each item in a
combobox. Given the REPORT.DB
table, we can analyse the fields
inside this table, and determine
whether or not a field is of type

ftMemo (so we use a memo field
instead of a simple field):

with DataSet do

for i:=0 to FieldCount-1 do

if Fields[i].DataType =

ftMemo then { memo field }

If we’re not dealing with a memo
field, then we need to take a look at
the INI file for this table and find
out if the value of the Items entry in
the section for this particular field-
name has a value bigger than zero.
This can be done as follows:

with DataSet, IniFile do

if ReadInteger(Fields[i].FieldName,

‘Items’, 0) = 0 then

{ no items = editbox }

And in case we stumble upon a
field that has a certain number of
pre-defined answer items associ-
ated with it, we just have to read
each item from the INI file (in sec-
tions Item1 to ItemXX where XX is
the number of items defined). This
can be seen in Listing 2 in the
procedure DataSetTable.

Before we think we’re done for
now, however, I want to make sure
that each field is positioned in a
‘nice’ and ‘user friendly’ way some-
where on the HTML form. To
implement this, I use a <TABLE>with

procedure DataSetTable(DataSet: TDataSet);
const
Int: Array[1..9] of Char = '123456789';

var
i,j,col,items: Integer;
option: ShortString;

begin
with DataSet do begin
writeln('<TABLE BORDER><TR>');
col := 0;
with TIniFile.Create(IniFile) do
{ IniFile = TableName with '.INI' extension }
try
for i:=1 to FieldCount-1 do begin
{ ignore first field }
if Fields[i].DataType = ftMemo then begin
{ memo = 3 columns }
writeln('</TR><TR><TD COLSPAN=3>');
col := 3

end else if Fields[i].Size > 99 then begin
{ wide field = 2 columns }
Inc(col,2);
if col > 3 then begin
writeln('</TR><TR>');
col := 2
end;
write('<TD COLSPAN=2>')

end else begin
{ small field = 1 column }
Inc(col);
if col > 3 then begin
writeln('</TR><TR>');
col := 1
end;
write('<TD>')

end;

write('',ReadString(Fields[i].FieldName,
'Name',Fields[i].FieldName), '
');

items :=
ReadInteger(Fields[i].FieldName,'Items',0);

if items = 0 then begin
{ memo or text field }
if Fields[i].DataType = ftMemo then begin
writeln('<TEXTAREA NAME="',
Fields[i].FieldName, '" ROWS=6 COLS=72>');

writeln('</TEXTAREA>')
end else
writeln('<INPUT TYPE=text NAME="',
Fields[i].FieldName,
'" SIZE=',Fields[i].Size)

end else begin
{ combobox: items > 0 }
writeln('<SELECT NAME="',
Fields[i].FieldName,'">');

for j:=1 to items do begin
option := ReadString(Fields[i].FieldName,
'Item'+Int[j],Int[j]);

writeln('<OPTION VALUE="',option,'">',
option,' ')

end;
writeln('</SELECT>')

end;
writeln('</TD>')

end;
writeln('</TR>')

finally
writeln('</TABLE>');
Free

end
end

end;

➤ Listing 2

➤ Figure 1

May 1998 The Delphi Magazine 45

<FORM ACTION="http://www.bolesian.nl/cgi_bin/bert.exe" METHOD=POST>
<INPUT TYPE=SUBMIT NAME=Action VALUE=First>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Prev>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Next>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Last>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Insert>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Delete>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Find>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Query>
<INPUT TYPE=SUBMIT NAME=Action VALUE=Refresh>
<INPUT TYPE=RESET VALUE=Reset>
...
</FORM>

a border and three columns. By
default, each field uses one line in
one column. Exceptions are big
fields (ie string fields over 99
characters) which take up two col-
umns, and memo fields, which take
up the entire row of three columns.

The code in Listing 2 can be used
to create an empty HTML CGI Form
for any dataset (TTable or TQuery).
If we have an additional INI file, we
can even produce comboboxes
with predefined answer values,
and names to use in the form
instead of the actual field names.

Note that each CGI input field
gets the exact name of the field in
the table, so we’re fully prepared
already to write some ‘connecting’
code between the CGI input fields
and a web server application.

CGI Executable
Now that we’ve written the code to
deal with the client side, it’s time to
focus on the server side: the CGI
application itself that gets informa-
tion from the form to perform the
actions. These actions are repre-
sented by the line of 10 buttons on
top of the form, as in Figure 1.

Normally, there are two kinds of
buttons in a form: RESET and SUBMIT
(see Listing 3). Fortunately, we can
have more than one SUBMIT button,
as long as we give each of them a
NAME (such as Action) and a unique
VALUE. In that case, the VALUE is
passed as the CGI value for the NAME
(in this case Action) CGI variable.

CGI Input Variables
Most web servers support the stan-
dard CGI protocol, which means
that in order to obtain the data
passed from the client to the
server application, we must first
check the environment variable
REQUEST_METHOD, to see if the POST or

➤ Listing 3
GET protocol was used. In case of a
GET, we must parse the URL itself,
while a more flexible POST means
we need to read a certain number
of characters from the standard
input. The exact number of charac-
ters is stored in the value of the
CONTENT_LENGTH environment vari-
able. The data that we receive this
way is encoded in a special way:
spaces have been replaced by a
plus characters (+), and special
characters have been encoded
using a percent sign (%) followed
by two hex digits. Once we’ve
decoded the data, we can extract
the individual fields and values
which are stored as field=value
pairs, separated by an ampersand.

I wrote the unit DrBobCGI to
handle these technical details, pro-
viding one function called Value
that we can use to obtain the value
of a CGI variable (passed as an
argument). Quite a useful unit, if I
may say so, as it shields us from the
CGI protocol details, offering the
potential of upgrading to another
protocol (say, ISAPI) without
having to change the user/caller of
the Value API itself.

Using the DrBobCGI unit, we can
get the value of the ActionCGI field,
and determine the action (First,
Prev, Next, Last, Insert, Delete,
Find, Query or Refresh). If for some
reason we don’t get a value for the
Action field, we give it a default
value of First and show the first
record of the REPORT.DB table.

{ determine Action }
Action := Value(‘Action’);
if Action = ‘’ then
Action := ‘First’;

Hidden Information
Assuming we want to fix the Data-
baseName and TableName informa-
tion for our CGI application (which
means we need to write a unique

CGI application for every table in
our database), we do need to keep
track of the current record
pointer. And while the current
record number may sound good
enough, this won’t work if some-
one deletes or inserts a record.
Instead, we must determine the
key values of the table, and store
the key values as hidden fields
inside the form, so we can deter-
mine and locate the current record
before we attempt to execute the
action we need to perform.

For the REPORT.DB table, the key
field only consists of the first (inte-
ger) field called Report, which we
can store as a hidden field as
follows:

<INPUT TYPE=HIDDEN
NAME="Report" VALUE="1">

Using this hidden field, we can
locate the current record (which
we must do before we perform the
action) as follows:

{ locate current record }

Report := Value(‘Report’);

if Report > 0 then

Table.FindKey([Report]);

Now it’s time for action...

Browsing
For browsing actions (First, Prev,
Next and Last) the operation is
easy: just perform the operation
on the table followed by a call to
the DataSetTable routine (but this
time a version that also lists the
value of the fields in the current
record). See Listing 5.

Locate
For the Find and Query buttons, we
may want to do something special,
like showing another form to enter
search strings.

I’ll skip these for now and we’ll
get back to them next time and
then design some HTML forms to
handle these actions:

else if (Action = ‘Find’)
or (Action = ‘Query’)
then begin
// special

end

46 The Delphi Magazine Issue 33

unit DrBobCGI;
{$I-}
interface
function Value(const Field: ShortString): ShortString;
{ use this API to obtain the CGI field value for "Field" }
implementation
uses
SysUtils, Windows;

type
TRequestMethod = (Unknown,Get,Post);

var
RequestMethod: TRequestMethod = Unknown;
ContentLength: Integer = 0;
Data: AnsiString = '';

function Value(const Field: ShortString): ShortString;
var
i: Integer;
len: Byte absolute Result;

begin
Len := 0;
i := Pos('&'+Field+'=',Data);
if i = 0 then begin
i := Pos(Field+'=',Data);
if i > 1 then i := 0

end else
Inc(i); { skip '&' }

if i > 0 then begin
Inc(i,Length(Field)+1);
while Data[i] <> '&' do begin
Inc(Len);
Result[Len] := Data[i];
Inc(i)

end
end

end {Value};
var
P: PChar;
i: Integer;
Str: ShortString;

initialization
P := GetEnvironmentStrings;
while P^ <> #0 do begin
Str := StrPas(P);
if Pos('REQUEST_METHOD=',Str) > 0 then begin

Delete(Str,1,Pos('=',Str));
if Str = 'POST' then
RequestMethod := Post

else if Str = 'GET' then
RequestMethod := Get

end;
if Pos('CONTENT_LENGTH=',Str) = 1 then begin
Delete(Str,1,Pos('=',Str));
ContentLength := StrToInt(Str)

end;
if Pos('QUERY_STRING=',Str) > 0 then begin
Delete(Str,1,Pos('=',Str));
SetLength(Data,Length(Str)+1);
Data := Str

end;
Inc(P, StrLen(P)+1)

end;
if RequestMethod = Post then begin
SetLength(Data,ContentLength+2);
for i:=1 to ContentLength do
read(Data[i]);

Data[ContentLength+1] := '&';
if IOResult <> 0 then
{ skip }

end;
i := 0;
while i < Length(Data) do begin
Inc(i);
if Data[i] = '+' then Data[i] := ' ';
if Data[i] = '%' then begin
{ special hex code }
Str := '$00';
Str[2] := Data[i+1];
Str[3] := Data[i+2];
Delete(Data,i+1,2);
Data[i] := Chr(StrToInt(Str))

end
end;
if i > 0 then
Data[i+1] := '&'

else
Data := '&'

finalization
Data := ''

end.

➤ Listing 4
Refresh
The Refreshbutton connects to the
table again to obtain the value of
the current record. Note that
another user may have changed
the current record while we were
waiting, and in that case Refresh
will always give you the latest infor-
mation from the table.

Insert and Delete
Clicking on Delete can be trans-
lated into a simple Delete opera-
tion on the table again. Clicking on
Insert means we must get a similar
HTML form, but this time with all
the fields empty so the user can
enter new values and then click on
a Post or Cancel button. This
second form can look like Figure 2.

This form only has two buttons:
one which has Post as value for the
Action, and one with Cancel as

{ perform action }
if Action = ‘First’ then
First

else if Action = ‘Next’ then
Next

else if Action = ‘Prev’ then
Prior

else if Action = ‘Last’ then
Last

➤ Listing 5

value for the action. In case we fill
in each field and click on the Post
button, we need to actually insert a
new record in the database, using a
new (highest) report number,
giving each field a possible value,
and finally posting this new record
(Listing 6).

There is one thing we have to
keep in mind with the Listing 5
code: the call to Post can fail, espe-
cially with Date fields that are
incorrectly formatted (for example
when you enter 13/4/1998 while the
ShortDate format is defined as
DD/MM/YYYY). This is something we
could respond to at this point in
code, or perhaps by adding some
JavaScript code to the web page to
check the input (thereby doing
data entry validation on the client
instead of the server).

DataSetTable
After we’ve performed the action,
it’s time to call the enhanced Data-
SetTable function again, where the
second (Boolean) argument speci-
fies whether or not we want to
show empty fields only (in case we
are inserting a new record into the
table):

{ generate HTML CGI-Form
with fields }

DataSetTable(Table,
Action = ‘Insert’);

Close;

After the HTML page has been gen-
erated, we can close the table
again, and terminate the CGI appli-
cation at the web server, which
will then send the generated HTML
to the user and his web browser at
the client side.

Edit/Modify
There’s one more thing we should
take into account: the ability to
change the values of fields of the
current record while we’re brows-
ing the database. This should be
possible at all times.

The easiest solution is to add an
Update button to the HTML CGI-
Form, which does the same as the
Post button, but doesn’t start look-
ing for a new unique key value.
Rather, it uses the current key
value, since we only want to
update the current record. When
updating an existing record this

May 1998 The Delphi Magazine 47

else if Action = 'Delete' then
Delete

else if Action = 'Insert' then
{ skip - DataSetTable will show new empty fields }

else if Action = 'Post' then begin
{ insert record }
First;
Report := 0;
while not Eof do begin
{ find highest Key value in use }
if Fields[0].AsInteger > Report then
Report := Fields[0].AsInteger;

Next
end;
Inc(Report);
Insert;
Fields[0].AsInteger := Report;
for i:=1 to FieldCount-1 do
Fields[i].AsString := Value(Fields[i].FieldName);

Post
end else if Action = 'Cancel' then
{ Cancel - ignore }

else
{ Refresh - ignore };

➤ Listing 6

way, we should also need to check
if the record didn’t change (behind
the scenes) during the time we
were editing the record on our
client browser. In order to ensure
this, we must somehow make sure
the HTML form not only contains
the new updated values, but also
the original values of each field in
the record. The latter information
should be hidden, but present nev-
ertheless. This means that we have
to extend the code that only writes
the values of the key fields (as
hidden fields) to perform this for
every field in the record, as shown
in Listing 7.

Note that we prefix the names of
the fields with an underscore, to
distinguish them from actual field
names.

The Update action now first
needs to check the value of the cur-
rent record against the ‘old’ values
as found inside the HTML form. If
they indeed match, then an update
can be done with the new values. If
not, then a message should be
returned instead, telling the user
that the update could not be per-
formed, because someone else
changed the record just a little bit
earlier.

Note that this is actually an
enhancement compared to the
current standard way of having
multiple users accessing the same

for i:=0 to FieldCount-1 do
writeln('<<INPUT TYPE=HIDDEN NAME="_',Fields[i].FieldName,
'" VALUE="',Fields[i].AsString,'">>');

➤ Listing 7

➤ Figure 2

tables (where
they can change
the same record,
and the last
update will over-
write an earlier
one).

If we don’t
want to use the
Update button, we
should be pre-
pared to expect
an update with
every action the
user takes (ie
while browsing,
finding, etc), by
first comparing
the ‘old’ field
values to the

‘new’ ones and, if they differ, pre-
pare to update the record in the
table (otherwise just perform the
original action). This is actually a
situation that more closely corre-
sponds to the Delphi TDBNavigator
control and usage, and can be
implemented as shown in Listing 8 .

This introduces another prob-
lem. Comparing the contents of a
memo field in a table with a <TEX-
TAREA> proved to be difficult, intro-
duced by the number of carriage

return and line feed characters (CR
and LF). So, I decided to modify the
Value function inside the DrBobCGI
unit to skip all CR and LF charac-
ters and replace them by a single
blank character instead (see the
updated unit DrBobCGI on the disk
for details). Fortunately, this
solved the problem.

The final code for the CGI inter-
net database application is on this
month’s disk.

Performance
Running the CGI database internet
application from within a web
browser shows the results as seen
in the two figures.

However, there is one significant
problem: performance. And that’s
not at all strange, considering that,
for each and every request, the CGI
application has to be loaded, the
entire BDE has to be loaded as
well, the table has to be opened,
the current record must be found,
followed by an optional update of
the current record (if the data sent
by the user has changed from the
original version), the action is per-
formed (depending on which of
the buttons the user clicked on),
the HTML form is dynamically gen-
erated again with all the informa-
tion, and finally the CGI
applications and the BDE have to
be shut down. Phew!

48 The Delphi Magazine Issue 33

The load and unload times espe-
cially weigh heavily on the
response times of this simple
internet database CGI example.

Next Time
Next month we’ll design some nice
HTML forms to find a given record
in a database table, or to perform a
dynamic SQL query and display
the results too.

➤ Listing 8

{ update record if data has changed }
if (Value('_'+Fields[0].FieldName) <> '') and
{ old data is stored } (ValueAsInteger(Fields[0].FieldName) <> -1)
then begin
NoChange := True; { assume no change }
for i:=0 to FieldCount-1 do
NoChange := NoChange AND
(Value('_'+Fields[i].FieldName) = Value(Fields[i].FieldName));

if not NoChange then begin
{ update record. check if data in table is still the same }
NoChange := True;
for i:=0 to FieldCount-1 do
NoChange := NoChange AND
(Value('_'+Fields[i].FieldName) = Fields[i].AsString);

if not NoChange then begin
{ table changed!! }
writeln('Error: value of record changed before '+

'your update was made!');
Action := 'Refresh' { force refresh }

end else begin
{ go ahead! }
writeln('Note: ');
Edit; { set Table in Edit-mode }
for i:=0 to FieldCount-1 do begin
if (Value('_'+Fields[i].FieldName) <> Value(Fields[i].FieldName))
then begin
{$IFDEF DEBUG}
write(i,' [',Value('_'+Fields[i].FieldName),

']-{',Value(Fields[i].FieldName),'} ');
{$ENDIF}
Fields[i].AsString := Value(Fields[i].FieldName) { new }

end
end;
Post { Post data in Table };
writeln(' previous record updated in table<P>')

end
end

end;

Also, we’ll discover how we can
improve the performance of the
simple CGI database application
by turning it into an ISAPI applica-
tion. Technically, this should only
mean a few changes: the applica-
tion itself must become a DLL,
must conform to the ISAPI API, and
should probably use a slightly
different method of obtaining the
values of the CGI variables.

Other than that, we’ll see how
we must change the way we work
with the Borland Database Engine
in order to prevent clashes
between multiple simultaneous
users. All this and more too, so
stay tuned...

Bob Swart (aka Dr.Bob, www.
drbob42.com) is a knowledge
engineer technical consultant
using Delphi, C++Builder and
JBuilder for Bolesian. Bob also
likes to watch videos of Star Trek
Deep Space Nine and Voyager
with his 4 year old son Erik Mark
Pascal and 1.5 year old daughter
Natasha Louise Delphine.

	Database
	Pick-Lists
	Target
	Yet Another HTML CGI Wizard
	CGI Executable
	CGI Input Variables
	Hidden Information
	Browsing
	Locate
	Refresh
	Insert and Delete
	DataSetTable
	Edit/Modify
	Performance
	Next Time

